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Abstract. The existence conditions of reversible geodesics and lpd-

symmetric curves are studied by using the notion of linear parallel displacement. 

Especially, local existence conditions of them are obtained by investigating their 

integrability conditions. Further, branching of geodesics is investigated. 
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Introduction 

 

One of authors has been studying parallel displacements of vector fields 

along a curve from 2008 (Nagano, 2008; Nagano, 2010). The definition 

(Definition 0.1) is different from a traditional one (Aikou and Kozma, 2008). 

The most different point is the linearity of the differential equations with respect 

to a moved vector field. The linearity leads us to define a inner product of 
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vector fields along a curve (Nagano, 2008; Nagano, 2010). Prof. Z. Shen, 

however, already had shown such definition satisfying the linearity in his book 

(Chern and Shen, 2005) by the coefficients 𝑁𝑗
𝑖  of an nonlinear connection 𝑁 on 

𝑇𝑀. He called such vector fields “linearly parallel”. Under a Finsler connection 

which Deflection tensor field 𝐷𝑗
𝑖 ≔ 𝐹𝑟𝑗

𝑖 𝑦𝑟 − 𝑁𝑗
𝑖  and torsion tensor field 

𝑇𝑟𝑗
𝑖 ≔ 𝐹𝑟𝑗

𝑖 − 𝐹𝑗𝑟
𝑖  vanish, Definition 0.1 coincides with Z. Shen's one. Therefore 

we call our parallelism “linearly parallel” (Nagano, 2011)). The definition of 

linear parallel displacement is as follows (Nagano, 2008; Nagano, 2010; 

Nagano, 2011): 

 

Definition 0.1 For a curve 𝑐(𝑡) = (𝑐𝑖(𝑡))(𝑎 ≤ 𝑡 ≤ 𝑏)  on 𝑀  and a 

vector field  𝑣 = (𝑣𝑖(𝑡)) along 𝑐, if the equation 

 
𝑑𝑣𝑖

𝑑𝑡
+ 𝐹𝑗𝑟

𝑖  𝑐, 𝑐  𝑣𝑗 𝑐 𝑟 = 0    𝑐 𝑟 =
𝑑𝑐𝑟

𝑑𝑡
                          (0.1) 

 

is satisfied, then 𝑣  is called a parallel vector field along 𝑐, and we call the 

linear map 𝛱𝐶:𝑣 𝑎 → 𝑣(𝑏) a linear parallel displacement along c. 

 

Since Eq. (0.1) is linear with respect to 𝑣, the inverse vector field 𝑣−1 is 

not necessary parallel along the inverse curve 𝑐−1, even if 𝑣 is parallel vector 

field along a curve 𝑐. In studying about that the inverse vector field 𝑣−1 is also 

parallel, the conditions are obtained, and then, it is called “symmetric” or “𝑙𝑝𝑑 -

symmetric” (Definition 1.1 and 1.3). In there, a following Finsler tensor field 

 

𝐻𝑗
𝑖 𝑥, 𝑦 ≔ 𝐹𝑟𝑗

𝑖  𝑥,𝑦 𝑦𝑟 + 𝐹𝑟𝑗
𝑖  𝑥,−𝑦  −𝑦𝑟 = 𝐹0𝑗

𝑖  𝑥,𝑦 + 𝐹0𝑗
𝑖  𝑥,−𝑦         (0.2) 

 

plays important role. 

 

Remark 0.1 The definitional equation of the traditional notion of 

parallel displacement is as follows (Aikou and Kozma, 2008): 

 
𝑑𝑣𝑖

𝑑𝑡
+ 𝑁𝑟

𝑖 𝑐, 𝑣 𝑐 𝑟 = 0    𝑐 𝑟 =
𝑑𝑐𝑟

𝑑𝑡
                                 (0.3) 

 

Now, a geodesic in Finsler space exists unique at any point and any 

direction locally. This fact is the same as in Riemannian case. However the 

reverse curve of a geodesic is not necessary one. M. Crampin investigated about 

the reversibility of geodesics in Finsler space and obtained the conditions of it 

in (Crampin, 2005). Further in it he pointed two kind of geodesics out, which 

are “reversible” and “strictly reversible”, for the first time in the history of 

Finsler geometry. We noticed that the reversible condition which M. Crampin 
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had in (Crampin, 2005) is arranged to tensorial form by using 𝐻𝑗
𝑖 , and we 

investigate the integrability conditions for a geodesic by using the arranged 

conditions. In this paper, first we make the relation of symmetric vectors, 𝑙𝑝𝑑-

symmetric curve and reversible geodesics clear (Section 1, Section 2). Second 

we study the existence conditions of reversible geodesic and 𝑙𝑝𝑑-symmetric 

curves (Section 3), and the last, behaviors of a geodesic passing through a one 

point along a direction are made clear, locally (Section 4). 

We have some remarks here. In ordinary, the reverse curve 𝑐−1 and the 

reverse vector field 𝑣−1  of a curve 𝑐(𝑡)(𝑎 ≤ 𝑡 ≤ 𝑏) and vector field 𝑣  along 

𝑐(𝑡)  are defined by 𝑐−1 𝑡 ≔ 𝑐(𝑎 + 𝑏 − 𝑡) and 𝑣−1(𝑡) ≔ 𝑣(𝑎 + 𝑏 − 𝑡) . 

However in this paper, for the revers parameter 𝜏 ≔ 𝑎 + 𝑏 − 𝑡 , these are 

defined by 

 

𝑐−1 𝜏 ≔ 𝑐 𝑎 + 𝑏 − 𝜏     𝑎𝑛𝑑    𝑣−1 𝜏 ≔ 𝑣 𝑎 + 𝑏 − 𝜏                (0.4) 

 

Then 𝑐 𝑡 , 𝑐−1(𝜏)  and 𝑣 𝑡 ,  𝑣−1(𝜏)  are always the same 𝑐 𝑡 =

𝑐−1(𝜏)  and 𝑣 𝑡 = 𝑣−1(𝜏) , however, the velocities 𝑐 =
𝑑𝑐

𝑑𝑡
, 𝑐 −1 =

𝑑𝑐−1

𝑑𝜏
 are 

opposite, 𝑐 −1 = −𝑐 . 
 

This is very convenient for us in studying reversible geodesics and 𝑙𝑝𝑑-

symmetric curves. In addition, according to (Matsumoto, 1986; Matsumoto, 

2003) we put terminology and notations used in this paper as follows: Let 𝑀 be 

an 𝑛-dimensional differentiable manifold and 𝑥 = (𝑥𝑖) a local coordinate of 𝑀. 

𝑇𝑀 is the tangent bundle of 𝑀 and (𝑥,𝑦) = (𝑥𝑖 ,𝑦𝑖) is a local coordinate of 𝑇𝑀. 

𝑁 = (𝑁𝑗
𝑖(𝑥,𝑦))  is an nonlinear connection of 𝑇𝑀 and its coefficients of 𝑁 on a 

local coordinate (𝑥, 𝑦). 𝐹 𝑥, 𝑦  is a Finsler structure (or Finsler metric, Finsler 

fundamental function) on 𝑀. Further, 𝐹𝛤 = (𝑁𝑗
𝑖 𝑥,𝑦 ,𝐹𝑗𝑟

𝑖  𝑥,𝑦 ,𝐶𝑗𝑟
𝑖 (𝑥,𝑦)) is a 

Finsler connection and its coefficients of 𝐹𝛤 satisfying 𝑇𝑗𝑟
𝑖 = 0, 𝐷𝑗

𝑖 =

0  𝑎𝑛𝑑 𝑔𝑖𝑗 |𝑘 = 0 (-metrical). Then 𝑁𝑗
𝑖 𝑥,𝑦 ,𝐹𝑗𝑟

𝑖  𝑥,𝑦 ,𝐶𝑗𝑟
𝑖 (𝑥,𝑦) are positively 

homogeneous of degree 1, 0 and − 1 , respectively, and 𝑁𝑗
𝑖  and 𝐹𝑗𝑟

𝑖  come to 

Cartan's (Chern's or Rund's) ones. Further the nonlinear connection 𝐺𝑗
𝑖 𝑥,𝑦  of 

Berwald connection and 𝐹𝑗𝑟
𝑖  𝑥,𝑦 satisfy 𝐺0

𝑖  𝑥,𝑦 (= 𝐺𝑖 𝑥,𝑦 ) =  𝐹00
𝑖  𝑥,𝑦 . 

The condition 𝑇𝑟𝑗
𝑖 = 0 is very important to the argument of Theorem 1.1 and 

𝐷𝑗
𝑖 = 0 is needed to study of reversibility of geodesics under linear parallel 

displacement. Further the condition 𝑔𝑖𝑗 |𝑘 = 0  gives invariance of the inner 

product on a geodesic (Nagano, 2008; Nagano, 2010). Last, we denote the 

collection of horizontal vectors at every point on 𝑇𝑀  by ℋ. This is the 

subbundle of 𝑇𝑇𝑀 and its dimension is 3𝑛. So we denote a local coordinate of 

ℋ by (𝑥,𝑦, 𝑧). And it is called “horizontal subbundle of  𝑇𝑇𝑀”. All of objects 
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appeared in this paper (curves, vector fields, etc) are differentiable. In additions, 

indexes  𝑎, 𝑏, 𝑐, · · · ,, 𝑖, 𝑗,𝑘, 𝑙,𝑚, · · ·   run on from 1 to 𝑛 = dim𝑀. 

 

1. Linear Parallel Displacement 

 

Since 𝐹𝑗𝑟
𝑖  in Eq. (0.1) has 𝑦(= 𝑐 ), the reverse vector field  𝑣−1 is not 

necessary parallel vector field, in general. We so have the following notion 

Definition 1.1 For a parallel vector field 𝑣  along a curve 𝑐 , if the 

reverse vector field  𝑣−1 is also one along 𝑐−1 , then 𝑣 is called a symmetric 

parallel vector field along 𝑐. 

 

Then we have 

 

Theorem 1.1 For a parallel vector field 𝑣 along 𝑐, 𝑣 is a symmetric 

parallel vector field along 𝑐 if and only if the equation 

 

𝐻𝑗
𝑖 𝑐, 𝑐  𝑣𝑗 = 0                                              (1.1) 

is satisfied on 𝑐. 

 

Proof. Let 𝑐(𝑡) = (𝑐𝑖(𝑡))  be a curve and 𝑣(𝑡) = (𝑣𝑖(t))  a parallel 

vector field along 𝑐(𝑡) . From the definition Eq. (0.4) of an inverse curve, 

𝑐−1 𝜏 = 𝑐 𝑡 , 𝑐 −1𝑖 𝜏 = −𝑐 𝑖 𝑡 , 𝑣−1 𝜏 = 𝑣(𝑡)  and 𝑣 −1𝑖 𝜏 = −𝑣 𝑖(𝑡)  are 

satisfied. Then the inverse vector field 𝑣−1 𝜏  of a parallel vector field 𝑣(𝑡) 

satisfies, from Eq. (0.1), 

 
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑗𝑟

𝑖  𝑐−1 ,−𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟 = 0    (𝑐 −1𝑟 =
𝑑𝑐−1𝑟

𝑑𝜏
).         (1.2) 

 

We assume 𝐻𝑗
𝑖(𝑐, 𝑐 )𝑣𝑗 = 0, then 𝐹0𝑗

𝑖  𝑐, 𝑐  𝑣𝑗 = −𝐹0𝑗
𝑖  𝑐,−𝑐  𝑣𝑗  is satisfied, and 

from 𝑇𝑟𝑗
𝑖 = 0, further 𝐹0𝑗

𝑖  𝑐, 𝑐  𝑣𝑗 = 𝐹𝑗0
𝑖  𝑐, 𝑐  𝑣𝑗  is also true. So 

 

 𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑗𝑟

𝑖  𝑐−1 ,−𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟 =
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑟𝑗

𝑖  𝑐−1,−𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟  

                      =
𝑑𝑣−1𝑖

𝑑𝜏
− 𝐹0𝑗

𝑖  𝑐−1 ,−𝑐 −1 𝑣−1𝑗  

                   =
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹0𝑗

𝑖  𝑐−1 , 𝑐 −1 𝑣−1𝑗  

                            =
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑟𝑗

𝑖  𝑐−1, 𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟  

                            =
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑗𝑟

𝑖  𝑐−1, 𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟  

(1.3) 
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is satisfied. And when the left hand side vanishes, the right hand side also 

vanishes. Therefore 𝑣−1 is parallel vector field along 𝑐−1. Inversely, if  
𝑑𝑣𝑖

𝑑𝑡
+

𝑁𝑟
𝑖 𝑐, 𝑣 𝑐 𝑟 = 0  and 

𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑗𝑟

𝑖  𝑐−1 ,−𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟 = 0  are satisfied, then 

𝐹0𝑗
𝑖  𝑐, 𝑐  𝑣𝑗 = −𝐹0𝑗

𝑖  𝑐,−𝑐  𝑣𝑗  is also true. Q.E.D. 

 

Furthermore we put a following definition 

 

Definiton 1.2 For a parallel vector field 𝑣  along a curve 𝑐 , if the 

following equation 

𝐻𝑗
𝑖 𝑐, 𝑐  𝑣𝑗 = 𝜙 𝑐, 𝑐  𝑣𝑖                                           (1.4) 

 

is satisfied, then 𝑣 is called a quasi symmetric parallel vector field along 𝑐, 

where 𝜙  is a scalar function on  𝑐, 𝑐   with 𝜙 𝑐,−𝑐  = 𝜙 𝑐, 𝑐  , namely, 

absolutely homogeneous of degree 1 in 𝑐 . 
 

Remark 1.1 When 𝑣 is a quasi symmetric parallel vector field along 𝑐, 

the reverse vector field  𝑣−1 satisfies 

 
𝑑𝑣−1𝑖

𝑑𝜏
+ 𝐹𝑗𝑟

𝑖  𝑐−1,−𝑐 −1 𝑣−1𝑗 𝑐 −1𝑟 = 𝜙 𝑐−1 ,−𝑐 −1 𝑣−1𝑖          (1.5) 

 

Last, we put following definitions 

 

Definition 1.3 (1) If any parallel vector field 𝑣 is necessary symmetric 

parallel vector field along a curve 𝑐, then the linear parallel displacement 𝛱𝐶 is 

called symmetric and the curve 𝑐 is called 𝑙𝑝𝑑-symmetric. 

(2) If any parallel vector field 𝑣 is necessary quasi symmetric parallel vector 

field along a curve 𝑐, then the linear parallel displacement 𝛱𝐶 is called quasi 

symmetric and the curve 𝑐 is called 𝑙𝑝𝑑-quasi symmetric. 

 

Then we have 

 

Proposition 1.1 A curve 𝑐 is 𝑙𝑝𝑑-symmetric (or 𝑙𝑝𝑑-quasi symmetric) if 

and only if the following equation 

 

𝐻𝑗
𝑖 𝑐, 𝑐  = 0  (𝑜𝑟  𝐻𝑗

𝑖 𝑐, 𝑐  = 𝜙 𝑐, 𝑐  𝛿𝑗
𝑖)                    (1.6) 

 

is satisfied on 𝑐, where 𝜙 is a scalar function which is absolutely homogeneous 

of degree 1 in 𝑐 . 
(∵)  From the arbitrariness of 𝑣  in Eq. (1.1) and Eq. (1.4), above 

theorem is right. ∎   
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Remark 1.2 If  𝐹𝑟𝑗
𝑖  𝑥,𝑦 = 𝐹𝑟𝑗

𝑖  𝑥,−𝑦  is satisfied, then, on any curve 

𝑐 , 𝐻𝑗
𝑖 𝑐, 𝑐  = 0  is true. So, in Riemannian and Berwald spaces, any linear 

parallel displacement 𝛱𝐶 is symmetric and any curve𝑐 is 𝑙𝑝𝑑-symmetric. 
 

Further, since 𝐻𝑗
𝑖  is a Finsler tensor field, we have 

 

Proposition 1.2 Let 𝐹𝛤  be a Finsler connection with Cartan's 

𝑁𝑗
𝑖 𝑥,𝑦   and 𝐹𝑗𝑟

𝑖 (𝑥,𝑦). Then any curve in a Finsler space (𝑀,𝐹,𝐹Γ) is 𝑙𝑝𝑑-

symmetric (or 𝑙𝑝𝑑-quasi symmetric) if and only if  𝐻𝑗
𝑖(𝑥,𝑦) vanishes, namely, 

 

𝐻𝑗
𝑖 𝑥,𝑦 = 0                                             (1.7) 

 

is satisfied (or 𝐻𝑗
𝑖 𝑥,𝑦 = 𝜙(𝑥,𝑦)𝛿𝑗

𝑖  is satisfied with a scalar function 

𝜙 𝑥,𝑦  on 𝑇𝑀 which is absolutely homogeneous of degree 1 in 𝑦).  

 

Remark 1.3 (1) From Definition 1.3 (1) and the equation Eq. (1.1), we 

can see that a symmetric parallel vector field 𝑣 along 𝑐 is the eigenvector of an 

eigenvalue 0 at every point on 𝑐. 

(2) From Definition 1.3 (2) and the equation Eq. (1.4), we can see that a quasi 

symmetric parallel vector field 𝑣 along 𝑐 is the eigenvector of a real eigenvalue 

𝜙 at every point on 𝑐. 

 

2. Reversible Geodesics 

 

We state the notion of reversible geodesics introduced by M. Crampin 

(Crampin, 2005) and some properties of them. 
 

Definition 2.1 For a curve 𝑐 𝑠 (𝑠: 𝑡𝑒 𝑎𝑟𝑐 − 𝑙𝑒𝑛𝑔𝑡), if 𝑐 is locally a 

distance-minimizing curve and a critical point of the functional ℱ𝐹  as follows: 
 

ℱ𝐹: 𝑐 𝑠 ∈ 𝛤 𝑝, 𝑞 → ℱ𝐹 𝑐 =  𝐹 𝑐, 𝑐  
𝑐

𝑑𝑠 ∈  ℛ+  (𝑐 =
𝑑𝑐

𝑑𝑠
),     (2.1) 

 

where  𝛤 𝑝, 𝑞  is a set of smooth oriented regular curves with the endpoints 𝑝 

and 𝑞, then 𝑐 is called a geodesic from 𝑝 to 𝑞. 
 

Remark 2.1 We know very well that a geodesic 𝑐 𝑠 = (𝑐𝑖 𝑠 ) satisfies 

the following equation 
𝑑2𝑐 𝑖

𝑑𝑡2 + 𝐹𝑗𝑟
𝑖  𝑐, 𝑐  𝑐 𝑗 𝑐 𝑟 = 0.                           (2.2) 

 

In (Crampin, 2005), the geodesic equation is written by the coefficient 𝐺𝑗
𝑖(𝑥, 𝑦) 

of Berwald connection as follows: 
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𝑑2𝑐 𝑖

𝑑𝑡2 + 𝐺𝑖 𝑐, 𝑐  = 0.                              (2.3) 

 

However, these are equivalent because of 𝐺𝑖 𝑥,𝑦 = 𝐺𝑗𝑟
𝑖  𝑥,𝑦 𝑦𝑗𝑦𝑟 =

𝐹𝑗𝑟
𝑖 (𝑥,𝑦)𝑦𝑗𝑦𝑟 . 

 

Definition 2.2 (Crampin, 2005) If a curve 𝑐  is a geodesic and the 

reverse curve 𝑐−1 is also one, then 𝑐 is called a reversible geodesic. 

 

Remark 2.2 The reverse parameter 𝜏(= 𝑙 − 𝑠) is not necessary affine 

one of 𝑐−1, where 𝑙 is the length of 𝑐. 

 

Theorem 2.1 A geodesic 𝑐 𝑠 = (𝑐𝑖 𝑠 ) is reversible if and only if 

there is a certain scalar function 𝜙 𝑐, 𝑐   satisfying the following equation 

 

𝐻0
𝑖  𝑐, 𝑐  ≔ 𝐻𝑗

𝑖 𝑐, 𝑐  𝑐 𝑗 = 𝜙 𝑐, 𝑐  𝑐 𝑖 ,                  (2.4) 

 

where 𝜙 𝑐, 𝑐   is absolutely homogeneous of degree 1 in 𝑐 . 
Proof. We assume the equation Eq. (2.4). Then the reverse curve 

𝑐−1 𝜏 = (𝑐−1𝑖(𝜏)) satisfies 

 
𝑑2𝑐−1𝑖

𝑑𝜏2 + 𝐹𝑗𝑟
𝑖  𝑐−1, 𝑐 −1 𝑐 −1𝑗 𝑐 −1𝑟 = 𝜙 𝑐−1 , 𝑐 −1 𝑐 −1𝑖                (2.5) 

 

where 𝜏 = 𝑙 − 𝑠,  𝑐 −1𝑖 = −𝑐 𝑖 ,
𝑑2𝑐−1𝑖

𝑑𝜏2 =
𝑑2𝑐 𝑖

𝑑𝑠2 . 

We consider a transformation 𝜎 → 𝜏 = 𝜎(𝜏) of the parameter. Then 

 

𝑑2𝑐−1𝑖

𝑑𝜎2
+ 𝐹𝑗𝑟

𝑖  𝑐−1 𝜎 , 𝑐 −1 𝜎  𝑐 −1𝑗  𝜎 𝑐 −1𝑟 𝜎 = 

=  
𝑑2𝜏

𝑑𝜎2
+ 𝜙 𝑐−1 𝜏 , 𝑐 −1 𝜏  (

𝑑𝜏

𝑑𝜎
)2 

𝑑𝑐 −1𝑖

𝑑𝜏
 

 

is satisfied. We can get a solution of the ordinary differential equation        
𝑑2𝜏

𝑑𝜎2 + 𝜙 𝜏 (
𝑑𝜏

𝑑𝜎
)2 = 0, easily. It is 

 

𝜎 = 𝑎 𝑒 𝜙 𝜌 𝑑𝜌
𝛾

0 𝑑𝛾,  𝑎 > 0: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 .
𝜏

0

 

 

This solution leads 𝑐−1  is geodesic. Inversely, if both of 𝑐(𝑠)  and 

𝑐−1(𝜏) are geodesics, then Eq. (2.4) is satisfied, obviously. Q.E.D. 
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Remark 2.3 (1) The necessary and sufficient condition of reversibility 

are introduced firstly by M. Crampin (Crampin, 2005) as the following equation 

 

𝐺𝑖 𝑐,−𝑐  = 𝐺𝑖 𝑐, 𝑐  + 𝜆 𝑐, 𝑐  𝑐 𝑖 ,                         (2.6) 

 
where 𝜆 = 𝜆(𝑥,𝑦) is a function, which is an absolutely homogeneous of degree 

1 in 𝑦.  

(2) Our case is 𝜙 𝑥, 𝑦 = −𝜆(𝑥,𝑦). 

 

Next, we state the notion of “strictly reversible”. 

 
Definiton 2.3 (Crampin, 2005) For a reversible geodesic 𝑐(𝑠), if the 

parameter 𝜏 of the reverse geodesic 𝑐−1(𝜏) is an affine parameter, namely, 

 

𝜏 = 𝑎𝑠   (𝑎 > 0: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡),                                     (2.7) 

 

then 𝑐 is called strictly reversible. 

 
Remark 2.4 (1) The original definition of strictly reversible in 

(Crampin, 2005) is 𝜆 = 0. That is  

 

𝐺𝑖 𝑐, 𝑐  = 𝐺𝑖 𝑐,−𝑐  .                                   (2.8) 

 

(2) The reverse geodesic 𝑐−1 𝜏 = (𝑐−1𝑖(𝜏)) satisfies 

 
𝑑2𝑐−1𝑖

𝑑𝜏2 + 𝐹𝑗𝑟
𝑖  𝑐−1, 𝑐 −1 𝑐 −1𝑗 𝑐 −1𝑟 = 0                        .(2.9) 

 

Theorem 2.2 A geodesic 𝑐  is strictly reversible if and only if the 

equation 

𝐻0
𝑖  𝑐, 𝑐  = 0                                        (2.10) 

 

is satisfied. 

(∵) From Eq. (2.7) and 𝜙 = −𝜆, it is trivial. ∎ 
 
From Proposition 1.1, Theorem 2.1 and 2.2, we have 

 
Proposition 2.1 (1) If a geodesic 𝑐 is 𝑙𝑝𝑑-symmetric, then 𝑐 is strictly 

reversible. 

(2) If a geodesic 𝑐 is 𝑙𝑝𝑑-quasi symmetric, then 𝑐 is reversible. 

 

Further from Definition 1.2, Theorem 1.1, 2.1 and 2.2, we have 
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Remark 2.5 For a geodesic 𝑐 and its affine parameter, 

(1) 𝑐 is strictly reversible if and only if 𝑐  is a symmetric parallel vector field 

along 𝑐. 

(2) 𝑐 is reversible if and only if 𝑐  is quasi symmetric parallel vector field along 𝑐. 

 

3. Existence Conditions 

 

In Section 1 and 2, we have the necessary and sufficient conditions for a 

curve 𝑐 to be 𝑙𝑝𝑑-symmetric, reversible or strictly reversible geodesic. In this 

section, we study the necessary and sufficient conditions of existing of these 

curves around at any point and direction.  
 

First, we treat the existence condition of 𝑙𝑝𝑑-symmetric curves. 

For a curve 𝑐, it is 𝑙𝑝𝑑-symmetric if and only if 𝐻𝑗
𝑖 𝑐, 𝑐  = 0 is satisfied 

(Proposition 1.2). Therefore for any point 𝑥 and a direction 𝑦 at 𝑥, according to 

the general theory of differential equations, there exists a 𝑙𝑝𝑑-symmetric curve 

𝑐(𝑡) satisfying 𝑐 0 = 𝑥 and 𝑐  0 = 𝑦 if and only if 
 

𝑑𝐻𝑗
𝑖

𝑑𝑡
 𝑐, 𝑐  =

𝜕𝐻𝑗
𝑖

𝜕𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘 +

𝜕𝐻𝑗
𝑖

𝜕𝑦𝑘
 𝑐, 𝑐  𝑐 𝑘 = 0                   (3.1) 

 

is satisfied on a certain neighborhood of (𝑥,𝑦). From the arbitrariness of 𝑐 𝑘 , we 

have 
𝜕𝐻𝑗

𝑖

𝜕𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘 = 0  and   

𝜕𝐻𝑗
𝑖

𝜕𝑦𝑘
 𝑐, 𝑐  = 0 . And from the homogeneous 

property of degree 1 in 𝑦  
𝜕𝐻𝑗

𝑖

𝜕𝑦𝑘 𝑦
𝑘 = 𝐻𝑗

𝑖  of the Finsler tensor field 𝐻𝑗
𝑖 𝑥,𝑦 , we 

notice 
𝜕𝐻𝑗

𝑖

𝜕𝑦𝑘
 𝑥,𝑦 = 0 is equivalent to 𝐻𝑗

𝑖 𝑥,𝑦 = 0. 

In addition, by using the similar observation we have 𝐻𝑗
𝑖 − 𝜙𝛿𝑗

𝑖 = 0 for 

𝑙𝑝𝑑-quasi symmetric curve. Then we have 
 

Proposition 3.1 For any point 𝑥  and a direction 𝑦 at 𝑥 , there exists 

a 𝑙𝑝𝑑-symmetric curve 𝑐(𝑡) satisfying 𝑐 0 = 𝑥 and 𝑐  0 = 𝑦 if and only if 
 

𝐻𝑗
𝑖 𝑥,𝑦 = 0                                           (3.2) 

 

is satisfied, and there exists a  𝑙𝑝𝑑 -quasi symmetric curve 𝑐(𝑡)  satisfying 

𝑐 0 = 𝑥 and 𝑐  0 = 𝑦 if and only if 
 

𝐻𝑗
𝑖(𝑥,𝑦) = 𝜙(𝑥, 𝑦)𝛿𝑗

𝑖                                      (3.3) 

 

is satisfied, where 𝜙(𝑥,𝑦) is a local function on a certain neighborhood of 

(𝑥,𝑦). 
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Next, we consider the existence condition of strictly reversible 

geodesics. 

From Theorem 2.2, a geodesic 𝑐(𝑡) is strictly reversible if and only if 

𝐻0
𝑖  𝑐, 𝑐  = 0  is satisfied. So we study the integrability condition of the 

following differential equation system 

 

 
 𝑐 𝑖 + 𝐹00

𝑖  𝑐, 𝑐  = 0

 𝐻0
𝑖  𝑐, 𝑐  = 0

                                       (3.4) 

 

Then, according to the theory of differential equation, the integrability 

condition for 𝑐(𝑡)  at a point 𝑐 0 = 𝑥  and a direction 𝑐  0 = 𝑦  is that the 

following equation 

 

𝑑𝐻0
𝑖

𝑑𝑡
 𝑐, 𝑐  =

𝑑

𝑑𝑡
 𝐻𝑗

𝑖 𝑐, 𝑐  𝑐 𝑗  =
∂𝐻𝑗

𝑖

∂𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 +

𝜕𝐻𝑗
𝑖

𝜕𝑦𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 + 

+𝐻𝑗
𝑖 𝑐, 𝑐  𝑐 𝑗 = 0                  (3.5) 

 

is satisfied on a certain neighborhood of (𝑥,𝑦). 

From 𝑐 𝑖 = −𝐹00
𝑖  𝑐, 𝑐   and 𝑁0

𝑘 𝑐, 𝑐  = 𝐹00
𝑘  𝑐, 𝑐  ,  Eq. (3.5) is rewritten 

as follows: 
 

𝑑𝐻0
𝑖

𝑑𝑡
 𝑐, 𝑐  =

δ𝐻𝑗
𝑖

δ𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 − 𝐻𝑘

𝑖  𝑐, 𝑐  𝐹00
𝑘  𝑐, 𝑐                 (3.6) 

 

In general, under 𝐻0
𝑖  𝑥,𝑦 = 0 and 𝑁0

𝑘 𝑥,𝑦 = 𝐹00
𝑘  𝑥,𝑦 , the quantity  

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦, 𝑧 ≔

𝛿𝐹𝑗𝑟
𝑖

𝛿𝑥𝑘
 𝑥, 𝑦 −

𝛿𝐹𝑗𝑘
𝑖

𝛿𝑥𝑟
 𝑥, 𝑧 − 𝐹𝑚𝑟

𝑖  𝑥,𝑦 𝐹𝑗𝑘
𝑚  𝑥, 𝑦 + 

                              +𝐹𝑚𝑘
𝑖 (𝑥, 𝑧)𝐹𝑗𝑟

𝑚 (𝑥, 𝑧) (Nagano, 2012; Nagano, 2013) satisfied 

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 =

𝛿𝐻𝑗
𝑖

𝛿𝑥𝑘
 𝑥, 𝑦 𝑦𝑘𝑦𝑗 .                  (3.7) 

 

 ∵  

 
𝛿𝐻𝑗

𝑖

𝛿𝑥𝑘
 𝑥,𝑦 = 

=
𝛿𝐹𝑗𝑟

𝑖

𝛿𝑥𝑘
 𝑥,𝑦 𝑦𝑟 −

𝛿𝐹𝑗𝑘
𝑖

𝛿𝑥𝑘
 𝑥,−𝑦 𝑦𝑟 − 𝐹𝑚𝑗

𝑖  𝑥,𝑦 𝐹𝑟𝑘
𝑚  𝑥,𝑦 𝑦𝑟 + 

 +𝐹𝑚𝑗
𝑖  𝑥,−𝑦 𝐹𝑟𝑘

𝑚  𝑥,−𝑦 𝑦𝑟 . 

 

On the other hand, 
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𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 ≔

𝛿𝐹𝑗𝑟
𝑖

𝛿𝑥𝑘
 𝑥,𝑦 −

𝛿𝐹𝑗𝑘
𝑖

𝛿𝑥𝑟
 𝑥,−𝑦 − 𝐹𝑚𝑟

𝑖  𝑥,𝑦 𝐹𝑗𝑘
𝑚  𝑥,𝑦 

+ 𝐹𝑚𝑘
𝑖 (𝑥,−𝑦)𝐹𝑗𝑟

𝑚 (𝑥,−𝑦) 

δ𝐻𝑗
𝑖

δ𝑥𝑘
 𝑥,𝑦  is different from 𝐾𝑗𝑟𝑘

𝑖  𝑥,𝑦,−𝑦  but by contractions of 𝑦𝑗 ,𝑦𝑘  and 𝑦𝑟 , 

Eq. (3.7) is satisfied. ∎ 
 

So from Eq. (3.6) and Eq. (3.7), we have 

 
𝑑𝐻0

𝑖

𝑑𝑡
 𝑐, 𝑐  = 𝐾𝑗𝑟𝑘

𝑖  𝑐, 𝑐 ,−𝑐  𝑐 𝑗 𝑐 𝑟𝑐 𝑘 − 𝐻𝑘
𝑖  𝑐, 𝑐  𝐹00

𝑘  𝑐, 𝑐  .            (3.8) 

 

From the integrability condition Eq. (3.5) and Eq. (3.8) 

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 = 𝐻𝑘

𝑖  𝑥,𝑦 𝐹00
𝑘  𝑥,𝑦                           (3.9)  

 

is satisfied. 

On the other hand, we have an normal coordinate around any point 

(Busemann, 1955). It is that the equation of a geodesic is written by a rectilinear 

equation. That means 𝐹00
𝑖  𝑥,𝑦 = 0 because of 𝑐 𝑖 + 𝐹00

𝑖  𝑐, 𝑐  = 0. Of course, 

the origin of it is not of class 𝐶2, but that is not obstruction because we consider 

a domain whose  𝑥,𝑦  is a point close to the origin of the normal coordinate. 

Therefore we can assume 𝐹00
𝑘  𝑥, 𝑦 = 0 , and the tensorial property of 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦, 𝑧 change Eq. (3.9) to 

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 = 0.                              (3.10)   

 

This is the integrability condition for Eq.(3.4). 

Next is the existence condition of reversible geodesics. 

From Theorem 2.1, a geodesic 𝑐 is reversible if and only if there is a 

scalar function satisfying 𝜙 c, 𝑐  = 𝜙 c,−𝑐  and 𝐻𝑗
𝑖 c, 𝑐  𝑐 𝑗 = 𝜙 c, 𝑐  𝑐 𝑖 . So we 

consider the integrability condition of the following differential equation system 
 

 
 𝑐 𝑖 + 𝐹00

𝑖  𝑐, 𝑐  = 0

    𝐻0
𝑖  𝑐, 𝑐  = 𝜙 c, 𝑐  𝑐 𝑖

                                    (3.11)  

 

Then, according to the theory of differential equation, the condition of 

integrability for 𝑐(𝑡) at any point 𝑐 0 = 𝑥 and a direction 𝑐  0 = 𝑦 is that the 

following equation 
 

𝑑

𝑑𝑡
 𝐻0

𝑖  𝑐, 𝑐  − 𝜙 c, 𝑐  𝑐 𝑖 = 0                             (3.12) 
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is satisfied. We have 
 

     
𝑑

𝑑𝑡
 𝐻0

𝑖  𝑐, 𝑐  − 𝜙 c, 𝑐  𝑐 𝑖 =  

=
∂𝐻𝑗

𝑖

∂𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 +

∂𝐻𝑗
𝑖

∂𝑦𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 + 𝐻𝑗

𝑖 𝑐, 𝑐  𝑐 𝑗 − 

−
∂𝜙

∂𝑥𝑘
 𝑐, 𝑐  𝑐 𝑖𝑐 𝑘 −

∂𝜙

∂𝑦𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑖 −𝜙 c, 𝑐  𝑐 𝑖 . 

(3.13) 

 

And we can arrange Eq. (3.13) by 𝑐 𝑖 = −𝐹00
𝑖  𝑐, 𝑐  ,

𝜕𝐻𝑗
𝑖

𝜕𝑥𝑘 =
𝛿𝐻𝑗

𝑖

𝛿𝑥𝑘 + 𝑁𝑘
𝑚 𝜕𝐻𝑗

𝑖

𝜕𝑦𝑚 ,
∂𝜙

∂𝑥𝑘 =

𝛿𝜙

𝛿𝑥𝑘 + 𝑁𝑘
𝑚 𝜕𝜙

𝜕𝑦𝑚  𝑎𝑛𝑑 𝑁0
𝑖 𝑐,−𝑐  = 𝑁0

𝑖 𝑐, 𝑐  − 𝜙 c, 𝑐  𝑐 𝑖 , 𝐹00
𝑖  𝑐, ±𝑐  = 𝑁0

𝑖 𝑐, ±𝑐   

as follows: 
 

𝑑

𝑑𝑡
 𝐻0

𝑖  𝑐, 𝑐  − 𝜙 c, 𝑐  𝑐 𝑖 =   

=
𝛿𝐻𝑗

𝑖

𝛿𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘𝑐 𝑗 −

𝛿𝜙

𝛿𝑥𝑘
 𝑐, 𝑐  𝑐 𝑖𝑐 𝑘 −  𝐻𝑘

𝑖  𝑐, 𝑐  − 𝜙 𝑐, 𝑐  𝛿𝑘
𝑖  𝐹00

𝑘  𝑐, 𝑐  . 

 

(3.14) 

From Eq. (3.14), the integrability condition Eq. (3.12) is rewritten to 
 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 =

δ𝜙

δ𝑥𝑘
 𝑥,𝑦 𝑦𝑖𝑦𝑘 +  𝐻𝑘

𝑖  𝑥,𝑦 − 𝜙 𝑥,𝑦 𝛿𝑘
𝑖  𝐹00

𝑘  𝑥,𝑦  (3.15) 

 

From the existence of an normal coordinate around  𝑥,𝑦  and the 

tensorial property of 𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦, 𝑧 , we have 

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 =

δ𝜙

δ𝑥𝑘
 𝑥, 𝑦 𝑦𝑖𝑦𝑘 .                 (3.16) 

 

This is the integrability condition for Eq. (3.11). 

Last is the existence condition of 𝑙𝑝𝑑-symmetric and geodesic curves. 

We see if a curve is 𝑙𝑝𝑑 -symmetric and geodesic then it is strictly 

reversible from Proposition 2.1. The condition that a curve 𝑐(𝑡)  is 𝑙𝑝𝑑 -

symmetric is 𝐻𝑗
𝑖 𝑐, 𝑐  = 0. So the PDE which we should study is as follows: 

 

 
𝑐 𝑖 + 𝐹00

𝑖  𝑐, 𝑐  = 0

             𝐻𝑗
𝑖 𝑐, 𝑐  = 0.

                                    (3.17) 

 

The integrability condition of Eq. (3.17) is  
𝑑𝐻𝑗

𝑖

𝑑𝑡
 𝑐, 𝑐  = 0   but 

because 𝑐(𝑡) is a geodesic, from  
𝑑𝐻𝑗

𝑖

𝑑𝑡
 𝑐, 𝑐  =

𝜕𝐻𝑗
𝑖

𝜕𝑥𝑘
 𝑐, 𝑐  𝑐 𝑘 +

𝜕𝐻𝑗
𝑖

𝜕𝑦𝑘
 𝑐, 𝑐  𝑐 𝑘   and  

𝑐 𝑖 = −𝐹00
𝑖 (𝑐, 𝑐 ), it is as follows: 
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δ𝐻𝑗
𝑖

δ𝑥𝑘
 𝑥,𝑦 𝑦𝑘 = 0                                          (3.18)  

 
is satisfied on a certain neighborhood of  𝑥,𝑦 . 

In general, 
δ𝐻𝑗

𝑖

δ𝑥𝑘
 𝑥,𝑦 𝑦𝑘  and 𝐾𝑗𝑟𝑘

𝑖  𝑥, 𝑦,−𝑦 𝑦𝑟𝑦𝑘  have a relation as 

follows: 
 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑟𝑦𝑘 + 𝐻𝑚

𝑖  𝑥,𝑦 𝐹0𝑗
𝑚  𝑥, 𝑦 = 

                     =
𝛿𝐻𝑗

𝑖

𝛿𝑥𝑘
 𝑥,𝑦 𝑦𝑘 + (𝐹𝑚𝑗

𝑖  𝑥,𝑦 − 𝐹𝑚𝑗
𝑖 (𝑥,−𝑦))𝐹00

𝑚(𝑥,𝑦)    
(3.19) 

 
Then, this is changed as follows: 

 

         𝐾𝑗𝑟𝑘
𝑖  𝑥, 𝑦,−𝑦 𝑦𝑟𝑦𝑘 =  𝐹𝑚𝑗

𝑖  𝑥,𝑦 − 𝐹𝑚𝑗
𝑖  𝑥,−𝑦  𝐹00

𝑚  𝑥,𝑦 −

                                     −𝐻𝑚
𝑖  𝑥,𝑦 𝐹0𝑗

𝑚 𝑥,𝑦 .   
(3.20) 

 
There exists a geodesic coordinate around any point  𝑥, 𝑦 , which the 

coefficient 𝐹𝑟𝑗
𝑖 (𝑥,𝑦) vanishes on it. Therefore we have, from Eq. (3.20), 

 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑟𝑦𝑘 = 0.                                   (3.21) 

 

Finally, we have a following theorem: 

 

Theorem 3.1 For any point 𝑥 and a direction 𝑦 at 𝑥, 

(1) there exists a strictly reversible geodesic 𝑐(𝑡) satisfying 𝑐 0 = 𝑥, 𝑐  0 = 𝑦 

if and only if 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 = 0                            (3.22) 

 

is satisfied on a certain neighborhood of (𝑥,𝑦), and 

 

(2) there exists a reversible geodesic 𝑐(𝑡) satisfying 𝑐 0 = 𝑥, 𝑐  0 = 𝑦 if and 

only if there is a scalar function 𝜙 𝑥,𝑦  with 𝜙 𝑥,𝑦 = 𝜙 𝑥,−𝑦  and the 

following equation 

𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟𝑦𝑘 =

δ𝜙

δ𝑥𝑘
 𝑥,𝑦 𝑦𝑖𝑦𝑘                      (3.23) 

 

is satisfied on a certain neighborhood of (𝑥,𝑦), and 

 
(3) there exists a lpd-symmetric and geodesic c(t) satisfying 𝑐 0 = 𝑥, 𝑐  0 = 𝑦 

if and only if 
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𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦,−𝑦 𝑦𝑗𝑦𝑟 = 0                               (3.24) 

 

is satisfied on a certain neighborhood of (𝑥,𝑦).  

 

Remark 3.1 Theorem 3.1(3) is very interesting. If the space (𝑀,𝐹,𝐹𝛤) 

is Riemannian, then 𝐾𝑗𝑟𝑘
𝑖  𝑥,𝑦, 𝑧  comes to Riemannian curvature  𝑅𝑗𝑟𝑘

𝑖 (𝑥). In a 

Riemannian space, Eq. (3.24) is trivial and there always exists a 𝑙𝑝𝑑-symmetric 

and geodesic curves passing through an arbitrary point 𝑥 . Namely, a 

geometrical meaning of  𝑅𝑗𝑟𝑘
𝑖  𝑥 𝑦𝑗𝑦𝑟 = 0 is noticed. 

 

4. Branching of Geodesics 

 

We investigated the behavior of geodesics in a Finsler surface in 

(Innami et al., 2016). In this section we discuss about branching of geodesics 

passing through one point. According to obtained results by studying of 𝑙𝑝𝑑-

symmetric curves and reversible geodesics, the velocity of a reversible geodesic 

is symmetric or quasi symmetric vector at every point on the geodesic (Remark 

2.5). A geodesic always exists at a point 𝑥 and a direction 𝑦(∈ 𝑇𝑥𝑀) locally. 

However, at 𝑥, a geodesic going along a direction 𝑦 is different from one going 

along the reverse direction −𝑦, in general. See Fig. 1(1). Let 𝑐 be a geodesic 

going along a direction 𝑦 and 𝑐  another one going along −𝑦 at 𝑥. Even if 𝑐 is 

extended backward, however, the image does not always coincide with 𝑐 . See 

Fig. 1(2), 𝑐 and 𝑐  are the same as above (1). In this time, the image of backward 

extension of 𝑐 coincides with 𝑐  (𝑐 is reversible). In the last case Fig. 1(3), a 

reversible geodesic till 𝑥 divides into 𝑐 and 𝑐  after 𝑥. 

If the eigenpolynomial of the matrix 𝐻𝑗
𝑖(𝑐 𝑡0 , 𝑐  𝑡0 ) has eigenvalue 0 

at 𝑐 𝑡0  and 𝑐  𝑡0  is the eigenvector of 0 , then 𝐻0
𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 0  is 

satisfied. And if the eigenpolynomial of the matrix 𝐻𝑗
𝑖(𝑐 𝑡0 , 𝑐  𝑡0 ) has real 

eigenvalue 𝜙  at 𝑐 𝑡0  and 𝑐  𝑡0  is the eigenvector of 𝜙 , then 

𝐻0
𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 𝜙(𝑐 𝑡0 , 𝑐  𝑡0 )𝑐 𝑖 𝑡0  is satisfied. Then we have 

 
Fig. 1 ‒ Branching of geodesic. 
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Theorem 4.1 Let 𝑐(𝑡) be a geodesic going along a direction 𝑦  and  

𝑐 (𝑡) another one going along −𝑦 at 𝑥. 

For a point 𝑥 = 𝑐 𝑡0 = 𝑐 (𝑡0), 

(1) if 𝐻0
𝑖  𝑐 𝑡0 , 𝑐  𝑡0  ≠ 0  and 𝐻0

𝑖  𝑐 𝑡0 , 𝑐  𝑡0  ≠ 𝜙(𝑐 𝑡0 , 𝑐  𝑡0 )𝑐 𝑖 𝑡0  are 

satisfied around 𝑥 on 𝑐, then geodesics 𝑐 and 𝑐  divide into two branches in front 

and behind at 𝑥 (cf. Fig.1(1)), or 

(2) if 𝐻0
𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 0 𝑜𝑟 𝐻0

𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 𝜙(𝑐 𝑡0 , 𝑐  𝑡0 )𝑐 𝑖 𝑡0  are 

satisfied around 𝑥  on 𝑐 , then 𝑐  is reversible geodesic passing through 𝑥 (cf. 

Fig.1(2)), or 

(3) if 𝐻0
𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 0 𝑜𝑟 𝐻0

𝑖  𝑐 𝑡0 , 𝑐  𝑡0  = 𝜙(𝑐 𝑡0 , 𝑐  𝑡0 )𝑐 𝑖 𝑡0  are 

satisfied till 𝑥 on 𝑐 and after 𝑥, 𝑐 does not satisfy above conditions, then 𝑐 and 𝑐  
divide into two branches after 𝑥 (see Fig. 1(3)). 

 
5. Examples 

 

We show three concrete examples for three cases of Theorem 4.1. The 

following situations are common on three examples. 
 

Situation 

𝑀(⊂ ℛ2) is an open domain, (𝑥, 𝑦) is the coordinate of 𝑀, (𝑥, 𝑦 ) is the 

coordinate of 𝑇(𝑥 ,𝑦)𝑀 and (𝑥,𝑦, 𝑥 ,𝑦 ) is the coordinate of 𝑇𝑀 
 

(A) The case of Theorem 4.1(1) (See Fig. 2) 

Let  𝛼2 = 𝑑𝑥 ⊗ 𝑑𝑥 + 𝑑𝑦⨂𝑑𝑦  be a 2-form and  𝛽 = −𝑦𝑑𝑥 (𝑑𝛽 ≠ 0) 

1-form, and  𝐹 = 𝛼 + 𝛽 is Randers metric (a special Finsler metric). Then  
 

𝐹 𝑥,𝑦, 𝑥 ,𝑦  =  𝑥 2 + 𝑦 2 − 𝑦𝑥                                (5.1) 
 

is satisfied on 𝑇𝑀. 𝑀 is the band   𝑥,𝑦 | − 1 < 𝑦 < 1 , and immediately, by 

using Euler-Lagrange equation, we have the equation of geodesic as follows 

 

𝑥 = 𝑦 , 𝑦 = −𝑥 ,                                        (5.2)  

 

where 𝑥 2 + 𝑦 2 = 1 is assumed. Then, geodesic 𝑐(𝑡) is a circular arc as follows 

 

𝑐 𝑡 =  
  𝑥 𝑡 = 𝑎 𝑐𝑜𝑠𝑡 + 𝑏 𝑠𝑖𝑛𝑡 + 𝑐1

  𝑦 𝑡 = 𝑏 𝑐𝑜𝑠𝑡 − 𝑎 𝑠𝑖𝑛 𝑡 + 𝑐2 ,
 ( 𝑥 − 𝑐1 

2 +  𝑦 − 𝑐2 
2 = 1),      (5.3) 

 

where 𝑎, 𝑏, 𝑐1 , 𝑐2 are constants and  𝑎2 + 𝑏2 = 1 is satisfied. The parameter 𝑡 is 

not the arc-length or its affine parameter. The eigenvalues 𝜙1 ,𝜙2 of 

𝐻𝑗
𝑖(𝑥, 𝑦, 𝑥 ,𝑦 ) are 
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𝜙1 ,𝜙2 =
3𝑥 𝑦 (𝑦2+1)± 16𝑥 4 𝑦2−1 +𝑥 2 9𝑦4+26𝑦2−15 𝑦 2+8𝑦2𝑦 4

2(𝑦2𝑥 2−1)
.            (5.4) 

 

These 𝜙1 ,𝜙2  don't satisfy 𝐻0
1 𝑥,𝑦, 𝑥 ,𝑦  = 𝜙𝑟𝑥 ,  𝐻0

2 𝑥,𝑦, 𝑥 ,𝑦  =
𝜙𝑟𝑦  (𝑟 = 1,2) on 𝑐(𝑡). 

Therefore 𝑐(𝑡) is not reversible. See Fig. 2, at origin 𝑂, a geodesic 𝑐(𝑡) 

has a velocity 𝑣 = (0,1) and 𝑐  has a velocity −𝑣 = (0,−1). Of course, at any 

point, the same state appeared. 

 

 
Fig. 2 ‒ Branching of geodesic (not reversible). 

 
(B) The case of Theorem 4.1(2) (See Fig. 3) 

Let  𝛼2 = 𝑑𝑥 ⊗ 𝑑𝑥 + 𝑑𝑦⨂𝑑𝑦  be a 2-form and  𝛽 = −𝑦𝑑𝑦 (𝑑𝛽 = 0)) 

1-form, and  𝐹 = 𝛼 + 𝛽 is Randers metric. Then 

 

𝐹 𝑥,𝑦, 𝑥 ,𝑦  =  𝑥 2 + 𝑦 2 − 𝑦𝑦                               (5.5)   

 

is satisfied on 𝑇𝑀. 𝑀 is the band   𝑥,𝑦 | − 1 < 𝑦 < 1 , and immediately, by 

using Euler-Lagrange equation, we have the equation of geodesic as follows 

 

𝑥 = 0, 𝑦 = 0,                                              (5.6) 

 

where 𝑥 2 + 𝑦 2 = 1 is assumed. Then, geodesic is a straight line as follows  

 

𝑐 𝑡 =  
   𝑥 𝑡 = 𝑎𝑡 + 𝑏
  𝑦 𝑡 = 𝑐𝑡 + 𝑑,

  𝑐 𝑥 − 𝑏 − 𝑎 𝑦 − 𝑑 = 0 ,                    (5.7) 

 

where 𝑎, 𝑏, 𝑐,𝑑  are constants and 𝑎2 + 𝑐2 = 1  is assumed. The eigenvalues 

𝜙1 ,𝜙2 of  𝐻𝑗
𝑖(𝑥,𝑦, 𝑥 ,𝑦 ) are 
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𝜙1 =
−2𝑦 2

1−𝑦2𝑦 2
, 𝜙2 =

−𝑦 2

1−𝑦2𝑦 2
 ,                                 (5.8) 

 

and only 𝜙1 always satisfy 𝐻0
1 𝑥,𝑦, 𝑥 ,𝑦  = 𝜙1𝑥 ,  𝐻0

2 𝑥,𝑦, 𝑥 ,𝑦  = 𝜙1𝑦  on 𝑐(𝑡). 

Therefore all geodesics are reversible. In particular, straight lines 𝑥 = ±𝑡 +
𝑏, 𝑦 = 𝑑(∈ ℛ) are strictly reversible because 𝑦 = 0 leads to 𝜙1 = 0 (Fig. 3). 

 

 
Fig. 3 ‒ Branching of geodesic (reversible). 

 

(C) The case of Theorem 4.1(3) (See Fig. 4) 

Let 𝛼2 = 𝑑𝑥 ⊗ 𝑑𝑥 + 𝑑𝑦⨂𝑑𝑦  be a 2-form and 𝛽 = −𝑒(𝑦)𝑑𝑥 1-form, 

and 𝐹 = 𝛼 + 𝛽 is Randers metric, where 𝑒 𝑦 =  𝑒
−

1

𝑦    (𝑦 > 0)

0        𝑦 ≤ 0 .
  

This 𝑒 𝑦  is 𝐶∞-class, however, not ω-class at 𝑦 = 0. 

Then  

𝐹 𝑥,𝑦, 𝑥 ,𝑦  =  𝑥 2 + 𝑦 2 − 𝑒(𝑦)𝑥                           (5.9) 

 

is satisfied on 𝑇𝑀. 𝑀 is ℛ2. In the area of y ≤ 0, 𝐹 is just Euclidean metric, so 

geodesics are straight lines and strictly reversible, of course. In the area of 

𝑦 > 0, 

𝐹 𝑥,𝑦, 𝑥 ,𝑦  =  𝑥 2 + 𝑦 2 − 𝑒
−

1

𝑦𝑥                         (5.10)  
 

From Euler-Lagrange equation of 𝐹, we have 
 

𝑥 =
𝑒
−

1
𝑦

𝑦2 𝑦 ,    𝑦 = −
𝑒
−

1
𝑦

𝑦2 𝑥 ,                                  (5.11)  

 

where 𝑥 2 + 𝑦 2 = 1 is assumed. Then 
 

𝑥 = 𝑒
−

1

𝑦 + 𝑎  𝑎: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ,    𝑦 = ± 1 − (𝑒
−

1

𝑦 + 𝑎)2               (5.12) 
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is obtained. 

C-(I) A geodesic 𝑥 = 𝑓1(𝑦)  having the velocity  𝑥 ,𝑦  = (0,1)  at 

Origin. 

The equation is given as follows 
 

𝑥 = 𝑒
−

1

𝑦 , 𝑦 =  1 − 𝑒
−

2

𝑦                                (5.13) 

Then, from 

𝑑𝑥

𝑑𝑦
=

𝑥 

𝑦 
=

𝑒
−

1
𝑦

 
1−𝑒

−
2
𝑦

                                  (5.14)  

by using Taylor expansion, we have its image in Fig. 4. 

C-(II) A geodesic 𝑥 = 𝑓2(𝑦)  having the velocity  𝑥 ,𝑦  = (0,−1)  at 

Origin. 

The equation is given as follows 

𝑥 = 𝑒
−

1

𝑦 , 𝑦 = − 1 − 𝑒
−

2

𝑦                          (5.15)  

Then, from 

𝑑𝑥

𝑑𝑦
=

𝑥 

𝑦 
= −

𝑒
−

1
𝑦

 
1−𝑒

−
2
𝑦

 ,                            (5.16) 

by using Taylor expansion, we have its image in Fig. 4 (The vertical axis is 𝑥 

and the horizontal axis is 𝑦).  

 

 
 

Fig. 4 ‒ Branching of geodesic (one side reversible). 

 
Remark 5.1 The Finsler metrics Eq. (5.1), Eq. (5.5) of Examples (A), 

(B) are analytic functions on 𝑇𝑀 ∖  0 , however, Eq. (5.10) of (C) is not so. If 

there is a point which is like (3) of Theorem 4.1, the Finsler metric 𝐹 is not 

analytic. 
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Proof. We assume 𝐹 is analytic and the point 𝑝 is (3)-type of Theorem 4.1. 

Since 𝐹 is analytic, all components 𝐻𝑗
𝑖  are also analytic. 

We consider the following functions 𝑓 𝑖(𝑡) on a geodesic 𝑐(𝑡) 

 

𝑓 𝑖 𝑡 ≔ 𝐻𝑗
𝑖 𝑐 𝑡 , 𝑐  𝑡  𝑐 𝑗  𝑡 − 𝜙 𝑡 𝑐 𝑖 𝑡 ,                    (5.17) 

 

where 𝜙 𝑡  is an eigenvalue of the matrix 𝐻𝑗
𝑖 𝑐 𝑡 , 𝑐  𝑡   and also analytic. 

These functions 𝑓 𝑖 𝑡  are all analytic. 

We set 𝑝 = 𝑐(0) at 𝑡 = 0. 𝑓 𝑖 𝑡  is an Taylor expandable function on a 

certain interval  −𝛿, 𝛿  (𝛿 > 0) because of analytic. Then 
 

    𝑓 𝑖 𝑡 = 𝑓 𝑖 0 +
𝑑𝑓 𝑖

𝑑𝑡
 0 𝑡 +

1

2

𝑑2𝑓 𝑖

𝑑𝑡2
 0 𝑡2 + ⋯+

1

𝑛 !

𝑑𝑛𝑓 𝑖

𝑑𝑡𝑛
 0 𝑡𝑛 + ⋯          (5.18) 

 

is satisfied. The geodesic 𝑐 𝑡  divides at point 𝑝 , so 𝑐 𝑡  is reversible on 

(−δ, 0]  and not reversible on  0, 𝛿 . Therefore, on (−δ, 0] , 

𝐻𝑗
𝑖 𝑐 𝑡 , 𝑐  𝑡  𝑐 𝑗  𝑡 = 𝜙 𝑡 𝑐 𝑖 𝑡 , namely, 𝑓 𝑖 𝑡 ≡ 0 is satisfied. We have 

 

𝑓 𝑖 0 =
𝑑𝑓 𝑖

𝑑𝑡
 0 =

𝑑2𝑓 𝑖

𝑑𝑡2
 0 = ⋯ =

𝑑𝑛𝑓 𝑖

𝑑𝑡𝑛
 0 = ⋯ = 0 .                (5.19) 

 

On the other hand, on  0, 𝛿 , 𝐻𝑗
𝑖 𝑐 𝑡 , 𝑐  𝑡  𝑐 𝑗  𝑡 ≠ 𝜙 𝑡 𝑐 𝑖 𝑡  is 

satisfied. Therefore 𝑓 𝑖 𝑡 ≠ 0  is hold. However, from Eq. (5.19), 𝑓 𝑖 𝑡 =
0 (∀𝑡 ∈  0, 𝛿 ) is induced, but this is contradiction. Therefore 𝐹 is not analytic. 

Q.E.D. 
 

Theorem 5.1 Let 𝑀  be an analytic manifold. If Finsler metric 𝐹  is 

analytic, then each geodesic is only (1)-type of Theorem 4.1, namely, not 

reversible or only (2)-type, namely, reversible. 
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NOTE ASUPRA REVERSIBILITĂȚII ȘI RAMIFICĂRII 

GEODEZICELOR ÎN SPAȚII FINSLER 

 

(Rezumat) 

 

În acest articol sunt studiate condiții de existență pentru geodezicele reversibile 

și curbele lpd-simetrice, folosind noțiunea de transport paralel liniar. Sunt obținute, în 

mod special, condiții de existență locală ale acestora prin investigarea condițiilor lor de 

integrabilitate. În plus, este studiată și ramificarea geodezicelor. 

 


